126 research outputs found

    The Need for an Understanding of Education Law Principles by School Principals

    Get PDF
    This chapter is aimed at setting the scene for the whole book. We commence by exploring an evidence based view that all school principals need some understanding of legal principles as they pertain to the educational setting. The arguments suggest that having a basic understanding of legal matters, should enable principals to be better equipped to recognise and more appropriately respond to a legal problem. We then explore developing trends of this topic over the past two to three decades by examining what legal matters have intersected with school authorities. A consideration of what level of legal understanding principals do possess is then mentioned. Data drawn from a recent research study undertaken on this issue followed by considerations and implications that stem from not having a basic level of literacy are also revealed

    A new mechanism for exchange processes observed in the compounds [M(η-C_5H_5)_2(exo-η-RCH = CH_2)H], M = Nb and Ta

    Get PDF
    Dynamic n.m.r. studies of the exchange processes in the complexes [M(η-C_5H_5)(exo-η-RCH=CH_2)H], M = Nb, Ta, lead to the proposal of a new mechanism involving intermediates with agostic bonding

    The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments

    Get PDF
    Anthropogenic nitrogen fixation and subsequent use of this nitrogen as fertilizer has greatly disturbed the global nitrogen cycle. Rivers are recognized hotspots of nitrogen removal in the landscape as interaction between surface water and sediments creates heterogeneous redox environments conducive for nitrogen transformations. Our understanding of riverbed nitrogen dynamics to date comes mainly from shallow sediments or hyporheic exchange flow pathways with comparatively little attention paid to groundwater-fed, gaining reaches. We have used 15N techniques to quantify in situ rates of nitrate removal to 1m depth within a groundwater-fed riverbed where subsurface hydrology ranged from strong upwelling to predominantly horizontal water fluxes. We combine these rates with detailed hydrologic measurements to investigate the interplay between biogeochemical activity and water transport in controlling nitrogen attenuation along upwelling flow pathways. Nitrate attenuation occurred via denitrification rather than dissimilatory nitrate reduction to ammonium or anammox (range = 12 to >17000 nmol 15N L-1 h-1). Overall, nitrate removal within the upwelling groundwater was controlled by water flux rather than reaction rate (i.e. Damköhler numbers 80% of nitrate removal occurs within sediments not exposed to hyporheic exchange flows under baseflow conditions, illustrating the importance of deep sediments as nitrate sinks in upwelling systems

    Diffusive equilibrium in thin films provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river

    Get PDF
    The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse-scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine-scale (<1 cm) biogeochemical patterns, especially in near-surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3−. In this study, we utilised diffusive equilibrium in thin-films samplers to capture high resolution (cm-scale) vertical concentration profiles of NO3−, SO42−, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub-reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin-films samplers indicate considerable cm-scale variability in NO3− (4.4 ± 2.9 mg N/L), SO42− (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface-subsurface water mixing in the shallow sediments of our sub-reach under baseflow conditions. The significance of this is that upwelling NO3−-rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub-reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper-seated groundwater fluxes and hydro-stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub-reach. Copyright © 2014 John Wiley & Sons, Ltd

    A rationale for higher ratios of CH4 to CO2 production in warmer anoxic freshwater sediments and soils

    Get PDF
    Freshwaters emit significant amounts of CH4 and CO2 and, as CH4 is the stronger greenhouse gas, understanding how carbon gets mineralized to either gas is important. In theory, under anoxia, methanogenesis coupled to fermentation should produce CH4 and CO2 in a 1 : 1 ratio. Here, we find that this 1 : 1 ratio is rare, with lower ratios of 0.1 : 1 being typical which confounds understanding CH4 in freshwaters. First, using a simple mathematical model we rationalize low ratios as poor methanogenic substrate utilization, including loss to nonmethanogenic processes. Second, we find substrate utilization improves at higher temperatures, especially for hydrogen. This increases CH4 to CO2 production ratios exponentially which could drive higher CH4 to CO2 emission ratios. Hence, we rationalize how warmer freshwaters may emit more methane

    Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic

    Get PDF
    Permafrost and glaciers in the high Arctic form an impermeable ‘cryospheric cap’ that traps a large reservoir of subsurface methane, preventing it from reaching the atmosphere. Cryospheric vulnerability to climate warming is making releases of this methane possible. On Svalbard, where air temperatures are rising more than two times faster than the average for the Arctic, glaciers are retreating and leaving behind exposed forefields that enable rapid methane escape. Here we document how methane-rich groundwater springs have formed in recently revealed forefields of 78 land-terminating glaciers across central Svalbard, bringing deep-seated methane gas to the surface. Waters collected from these springs during February–May of 2021 and 2022 are supersaturated with methane up to 600,000 times greater than atmospheric equilibration. Spatial sampling reveals a geological dependency on the extent of methane supersaturation, with isotopic evidence of a thermogenic source. We estimate annual methane emissions from proglacial groundwaters to be up to 2.31 kt across the Svalbard archipelago. Further investigations into marine-terminating glaciers indicate future methane emission sources as these glaciers transition into fully land-based systems. Our findings reveal that climate-driven glacial retreat facilitates widespread release of methane, a positive feedback loop that is probably prevalent across other regions of the rapidly warming Arcti
    • …
    corecore